

Ínría



TIMC

# 3D inference of the spine from a depthmap of the back



<sup>1</sup>Inria Morpheo, LJK, UGA, CNRS <sup>2</sup>Anatoscope <sup>3</sup>TIMC-SPM, CHU-Grenoble-Alpes, UGA









#### **Research question**

Can we guess scoliosis from a single depthmap?

### Take away message

Depthmaps allow:

Scoliosis severity (°)

100

75

 Non-ionizing detection of scoliosis Location and quantification of the deformities Automatic characterization in 3D



# Architecture of the regression model

 $PCA^{-1}$ Inv. transformation of the PCA model MSEMean Squared Error  $D_i \in \mathbb{R}^{224 \times 224}$  Depthmap of subject *i*  $\theta_i \in \mathbb{R}^{20}$ Reduced spine representation  $\Theta_i \in \mathbb{R}^{3 \times 17}$ 3D coordinates of the vertebrae  $\omega_{ heta} \in \mathbb{R}$ Weight on the  $\theta$  predictions  $\omega_\Theta \in \mathbb{R}$ Weight on the  $\Theta$  predictions

 $Loss = \omega_{\theta} MSE(\hat{\theta}, \theta) + \omega_{\Theta} MSE(PCA^{-1}(\hat{\theta}), \Theta)$ 



# Adolescent Idiopathic Scoliosis



## Dataset

121 subjects (31% with scoliosis) from different sources:

| <b>Grenoble Hospital</b>             | NMDID [2]                                    |
|--------------------------------------|----------------------------------------------|
| 3D avatars using anatomical modeling | <ul> <li>Segmentation of CT-Scans</li> </ul> |
|                                      |                                              |





## References

- [1] Choi et al. CNN-based Spine and Cobb Angle Estimator Using Moire Images. IIEE transactions on image electronics and visual computing, 5(2):135–144, 2017.
- [2] Edgard et al. New Mexico Decedent Image Database, Office of the Medical Investigator, University of New Mexico, 2020.
- [3] He et al. Deep residual learning for image recognition. CVPR 2016, 2016.
- [4] Kokabu et al. An algorithm for using deep learning convolutional neural networks with three dimensional depth sensor imaging in scoliosis detection. Spine Journal, 21:980-987, 2021.
- [5] Watanabe et al. An application of artificial intelligence to diagnostic imaging of spine disease: Estimating spinal alignment from moiré images. Neurospine, 16(4):697–702, 2019.
- [6] Yang et al. Development and validation of deep learning algorithms for scoliosis screening using back images. Communications Biology, 2:1–8, 2019.

| Metrics |       |                |                                              |           |           |                |      |      |                   | Classificatior |                           |  |  |
|---------|-------|----------------|----------------------------------------------|-----------|-----------|----------------|------|------|-------------------|----------------|---------------------------|--|--|
|         |       | Positions (mm) | Angles (°)                                   |           |           | Classification |      | 60 - | •••••             | 10° threshold  |                           |  |  |
| Method  | Image | 3D             | Sev                                          | Кур       | Lor       | Sens           | Spec | AUC  | 50 -              |                | Regression (R=0.83<br>y=x |  |  |
| Ours    | Depth | 7.1 (4.7)      | 5.5 (6.2)                                    | 6.3 (5.4) | 8.2 (6.9) | 64             | 99   | 90   | <del>~</del> 40 - | •              | ,<br>NMDID cases          |  |  |
| [6]     | RGB   | ×              | ×                                            | ×         | ×         | 88             | 84   | 95   | ) uc              | •              | GH cases                  |  |  |
| [5]     | Moiré | ×              | 3.4 (2.6)                                    | ×         | ×         | NA             | NA   | NA   | - 06 <u>i</u> ti  |                |                           |  |  |
| [/]     | Donth | ×              | $\left[ \Lambda \Lambda - \Lambda 7 \right]$ | ×         | ×         | 99             | 42   | ΝΙΔ  | edi               |                | <b>&gt;</b>               |  |  |

Comparison with state-of-the-art reported values on different datasets. In positions: average distance error (with standard deviation). In curvatures: mean absolute error (with std) of severity, kyphosis and lordosis. In classification: sensitivity, specificity and AUC. NA: Not Available. X: Not computed.



nicolas.comte@inria.fr